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ABSTRACT
Motivation: Next generation sequencing technologies open exciting
new possibilities for genome and transcriptome sequencing. While
reads produced by these technologies are relatively short and error
prone compared to the Sanger method their throughput is several
magnitudes higher. To utilize such reads for transcriptome sequen-
cing and gene structure identification, one needs to be able to accura-
tely align the sequence reads over intron boundaries. This represents
a significant challenge given their short length and inherent high error
rate.
Results: We present a novel approach, called QPALMA, for compu-
ting accurate spliced alignments which takes advantage of the read’s
quality information as well as computational splice site predictions.
Our method uses a training set of spliced reads with quality informa-
tion and known alignments. It uses a large margin approach similar
to support vector machines to estimate its parameters to maximize
alignment accuracy. In computational experiments we illustrate that
the quality information as well as the splice site predictions help to
improve the alignment quality. Finally, to facilitate mapping of massive
amounts of sequencing data typically generated by the new techno-
logies, we have combined our method with a fast mapping pipeline
based on enhanced suffix arrays. Our algorithms were optimized and
tested using reads produced with the Illumina Genome Analyzer for the
model plant Arabidopsis thaliana.
Availability: Datasets for training and evaluation, additional results
and a stand-alone alignment tool implemented in C++ and python
is available at http://www.fml.mpg.de/raetsch/projects/
qpalma.
Contact: Gunnar.Raetsch@tuebingen.mpg.de

1 INTRODUCTION
Next generation (NG) sequencing technologies are able to generate
huge amounts of DNA sequence reads at a fraction of the cost of
Sanger sequencing. While the human genome project cost several
hundred million US dollars, new sequencing technologies like
Roche/454’s FLX Genome Sequencer are able to sequence a human
genome with no more than 1 million US dollars. Recently intro-
duced sequencing technologies like Illumina’s Solexa sequencing
technology or ABI’s SOLiD are able to generate the same amount
of sequences with an order of magnitude lower costs. However,
these technologies also come with certain limitations in particular
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concerning the read length and the rate of sequencing errors. These
characteristics make their use for genome and transcriptome sequen-
cing considerably more challenging. So far, most efforts were spent
in developing methods for analysing sequence reads from genomic
DNA, for instance efficient alignments of reads to reference geno-
mes for genome resequencing and also de novo genome assembly
(e.g. Sundquist et al., 2007; Hillier et al., 2008; Zerbino and Birney,
2008; Wold and Myers, 2008). While the latter techniques seem in
principle be useful for transcriptome analysis, they typically do not
use the genomic sequence for guiding the assembly and are additio-
nally faced with alternative transcripts which can result in assembly
errors.

For EST and cDNA sequences one therefore resorts to a different
strategy: instead of assembling the sequences before aligning them
to the genome, one first aligns the single reads to the genome and
then merges the alignments to infer gene structures. Many methods
have been developed to solve the so-called spliced alignment pro-
blem of aligning spliced RNA sequences to the genome (Gelfand
et al., 1996; Florea et al., 1998; Usuka et al., 2000; Kent, 2002; Sla-
ter and Birney, 2005; Zhang and Gish, 2006; Schulze et al., 2007).
These methods are efficient and accurate if the sequence blocks
(exons) are sufficiently long and are highly similar to the genomic
sequence. Reads from NG sequencing techniques typically do not
have either of the two properties. For instance, if a single read of
length 30nt spans over two exons, it is not very unlikely that the
shorter part covering one exon is not longer than just 5nt (>16%).
Moreover, assuming a substitution error rate of 5% it is very likely
that there is at least one mismatch within these 5nt. This repres-
ents a substantial challenge to alignment algorithms such as blat for
correctly aligning such reads.

In this work we aim to develop a method exploiting all available
information to accurately align as many as possible spliced sequence
reads to the genome. As information sources there is not only the
DNA sequence of the read and the genome, but also quality informa-
tion associated with the read and predictions about potential splice
sites within the genome. In our previous work we already proposed
a method taking advantage of splice site predictions (Schulze et al.,
2007). In this work we extend this method to also benefit from the
read’s quality scores. This information can help to decide at which
positions one can expect to observe mismatches and subsequently
contribute to the identification of the correct alignment.

Rather accurate methods for relating the quality score to the error
probability which can then be used in some probabilistic model
have been proposed for Sanger sequencing (Mott, 1998; Li et al.,
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2004). However, such measures are less well developed and accurate
for NG sequencing techniques. We therefore propose an alterna-
tive method for taking quality scores of a sequence into account.
The idea is to learn, in a supervised manner, how to score qua-
lity information, splice site predictions and sequence identity based
on a representative set of sequence reads with known alignments.
The algorithm is based on extensions of the well-known Smith-
Waterman algorithm using more sophisticated parametrized scoring
functions. The idea is to tune the parameters of the scoring functi-
ons such that the true alignment does not only achieve a large score
(to be “most likely”), but also that all other alignments score con-
siderably lower than the true alignment (to obtain a “large margin
between the alignments”). Similar ideas are used in other large mar-
gin algorithms such as Support Vector Machines (SVMs) (Vapnik,
1995; Müller et al., 2001; Schölkopf and Smola, 2002) and Boosting
(Freund and Schapire, 1997; Meir and Rätsch, 2003). The resul-
ting scoring function can then be used to obtain the best scoring
alignment via the extended Smith-Waterman algorithm.

To train and evaluate our method we need a set of representative
sequences for which we know the true alignment. The most repre-
sentative set of sequences would be obtained by sequencing short
reads from the transcriptome. However, in this case we would not
necessarily know the correct alignment: Only in the simplest cases
we could come up with an accurate alignment based on standard
alignment techniques. This set of sequences would not be suitable
for evaluating a method aimed to be more accurate than a standard
alignment technique, since one would not be sure which method
made a mistake. We therefore chose to use short genomic sequence
reads produced with the Illumina Genome Analyzer for generating
in silico spliced sequence reads based on the genome annotation.
The idea is to consider all genomic sequence reads overlapping with
two consecutive exon boundaries (according to the annotation). If
a read covers the end of the first exon, it can be combined with
a read covering the start of the other exon. Using this merge ope-
ration, we can generate reads that basically look like transcriptome
reads produced on the same platform particularly with regard to read
error probability and per base quality, for which we exactly know the
correct spliced alignment.

In a typical application scenario one needs to align millions of
short sequence reads against the genome. In this case the direct app-
lication of the extended Smith-Waterman algorithm for alignment
against the whole genome is not feasible. We therefore propose to
combine our method with a fast suffix array based approach to iden-
tify a seed for the alignment. A read will in the great majority of
the cases span over one or two exons. Hence, the longer part of the
read is going to be long enough to be found quite unambiguously
in the genome if allowing for a small number of substitutions or
indels. For each such seed we can use QPALMA to align the read
to the genomic regions surrounding the seed position to identify the
other part of the match. In some cases there will be several seeds.
Then QPALMA’s scoring function can be used to decide which seed
leads to the correct alignment. This combined strategy will allow us
to efficiently align even very large numbers of reads identifying their
spliced alignments.

The paper is structured as follows: In Section 2 we first describe
the different parts of QPALMA, describe the generation of in silico
spliced reads derived from a Illumina Genome Analyzer and finally
describe the pipeline for efficient alignment of large sequence sets.

In Section 3 we will show the power of our approach while illu-
strating that each information source leads to additional increases
in performance. Finally we show first results using the proposed
alignment pipeline and conclude this work with a discussion in
Section 4.

2 METHODS
In the following sections we will describe our method, called QPALMA,
consisting of three independent parts: the splice site prediction model,
the dynamic programming algorithm and the optimization of the scoring
function thereby solving the so-called inverse alignment problem (e.g. Kece-
cioglu and Kim (2006)). Additionally, we will outline the in silico generation
of spliced reads for training based from genomic reads and propose a pipe-
line combining enhanced suffix arrays, based on vmatch (Abouelhoda et al.,
2002) and QPALMA to align millions of short transcriptome reads as for
instance generated by next generation sequencing techniques.

Fig. 1. Work-flow for training QPALMA: Confirmed donor and acceptor
sites are used to train a SVM based splice site predictor (Sonnenburg et al.,
2007). Short sequence reads (36nt) obtained from an Illumina 1G sequen-
cing machine and the Arabidopsis thaliana genome annotation (TAIR 7)
were used to derive a training and evaluation set. QPALMA generalizes the
Smith-Waterman algorithm by including sequence quality information and
an intron model considering splice site predictions as well as intron length
information to learn how to produce optimally spliced alignments.

2.1 Splice Site Predictions
For predicting splice sites one first needs a data set of known acceptor and
donor splice sites as well as suitable decoy sequences. Such sequences can be
obtained by aligning EST and cDNA sequences using a standard alignment
program suitable for long sequence reads and spliced alignments (e.g. blat
(Kent, 2002) or PALMA (Schulze et al., 2007)). High quality alignments
can be used to confirm acceptor as well as donor splice sites and aligned
genomic regions can be used for sampling decoy site by considering all sites
with consensus AG and GT/C. For each site we consider a sequence win-
dow of 141nt around the splice site, which is used for classification into
splice site vs. decoy (separately for acceptor and donor sites). To learn a
classifier one may use SVMs with the so-called “weighted degree” kernel
(Sonnenburg et al., 2002; Rätsch et al., 2006). This kernel computes the
similarity between two sequences s and s′ by considering substrings occur-
ring in both strings up to length d. In Sonnenburg et al. (2007) we have done
these steps and also provided genome-wide predictions for several organisms
at ftp://ftp.tuebingen.mpg.de/fml/behr/splicing. In this
work we use these predictions for Arabidopsis thaliana.
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2.2 Extensions of the Smith-Waterman Algorithm
In this section we will discuss three extensions of the well-known Smith-
Waterman algorithm (Smith and Waterman, 1981) for local sequence ali-
gnments which can be used in combination with the parameter estimation
algorithm outlined in the next section.

2.2.1 The Classical Algorithm The classical deterministic and exact
alignment algorithm is the Smith-Waterman algorithm and is based on dyna-
mic programming. Its running time is O(m · n), where m is the length of
the short read SE , and n is the length of the DNA sequence SD . It builds up
a m · n matrix and hence has the same space complexity.

The main idea of the algorithm is to compute a local alignment by deter-
mining the maximum over all alignments of all prefixes SE(1 : i) :=
(SE(1), . . . , SE(i)) and SD(1 : j) := (SD(1), . . . , SD(j)) of the
two sequences SE and SD , while allowing for unaligned starts of the
sequences (details below). An alignment is given by a sequence of pairs
(ar, br), r = 1, . . . , R, where R ≤ m + n depends on the alignment and
ar, br ∈ Σ := {A, C, G, T, N, −}. A pair consists either of the two
corresponding letters of the two sequences or a single letter in one sequence
paired with a gap in the other sequence. The alignment is scored using a sub-
stitution matrix M , which we interpret as a function M : Σ×Σ → R. Then
the score for the alignment A = {(ar, br)}r is simply

P
r M(ar, br).

We define V (i2, j2) to be the score of the best alignment of prefixes
SE(i1 : i2) and SD(j1 : j2) for the best choice of starting positions i1
and j1 on sequences E and D, respectively. The best local alignment can be
obtained by finding the maximal entry in the matrix V determining i2 and
j2 as the ends of the alignment. The matrix V can be computed using the
following recurrence formula (for all i = 1, . . . , m and j = 1, . . . , n):

V (i, j) = max

8>><>>:
0

V (i− 1, j − 1) + M(SE(i), SD(j))
V (i− 1, j) + M(SE(i),′−′)
V (i, j − 1) + M(′−′, SD(j))

(1)

The recurrence is initialized with V (0, 0) := 0, V (i, 0) := 0 and
V (0, j) := 0 for all i = 1 . . . m and j = 1 . . . n. There are four possi-
bilities: (a) SE(1 : i) and SD(1 : j) are unaligned, (b) SE(i) and SD(j)
are aligned to each other (possibly a mismatch); (c) SE(i) is aligned to a gap
in the DNA sequence and (d) SD(j) is aligned to a gap in the short sequence.
In the original algorithm there are only these four possibilities and one can
straightforwardly fill the matrix from left to right and top to bottom to finally
compute the maximum over all elements in V . The optimal alignment can
then be obtained by backtracking (Durbin et al., 1998).

2.2.2 Extension 1: Quality Scores In a first step we extend the sco-
ring system algorithm to take quality information of the short sequence read
into account (a similar idea was proposed in a simpler form in Mott (1998)).
The idea is relatively straightforward: So far M : Σ × Σ → R only scored
an alignment based on matches, mismatches or indels. Here, we define M
to be a function of the two aligned letters as well as the quality score of the
read at the corresponding position, i.e. M : Σ × R × Σ → R.1 Note that
we only have quality information available for positions not corresponding
to a gap on the short read. Hence, the functions M(′−′, ·, b) (b ∈ Σ) can be
considered as a constant. Given this scoring function we can now extend the
recurrence formula (for all i = 1, . . . , m and j = 1, . . . , n):

V (i, j) = max

8>><>>:
0

V (i− 1, j − 1) + M(SE(i), QE(i), SD(j))
V (i− 1, j) + M(SE(i), QE(i),′−′)

V (i, j − 1) + M(′−′, ·, SD(j))

, (2)

where QE(i) is the quality score of the short read at position i.
Please note that this algorithm has the same computational complexity

as the original Smith-Waterman algorithm (O(mn)). However, it uses a

1 It is straightforward to extend this to the case where quality information is
available for both sequences.

more complex scoring that may depend on the sequencing technology used.
We chose to represent the scoring function as a set of one dimensional
functions—one for every match-pair. Hence, we require 6x6 such func-
tions (Ma,b(q) := M(a, q, b), a, b ∈ Σ), out of which 6 are constant
(corresponding to a gap on the short read).

2.2.3 Extension 2: Splice Sites The Smith-Waterman algorithm ali-
gns two sequences based on single base pairs and does not distinguish
between exons and introns. In Schulze et al. (2007) we therefore propo-
sed to extend the Smith-Waterman algorithm to better model introns. The
previously proposed algorithm required considerably more computing time:
O(mnL) operations, where L is the maximal length of the intron. Given
the large number of reads to be aligned, it is highly desirable to keep the
required computing time low. Hence, we propose an alternative formulation
that does model splice sites but only scores the intron length by an affine
function while only requiringO(mn) operations. The idea is to maintain an
additional recurrence matrix W used to keep track of the intron boundaries.
We use the following recurrence formulas:

V (i, j) = max

8>>>><>>>>:
0

V (i− 1, j − 1) + M(SE(i), QE(i), SD(j))
V (i− 1, j) + M(SE(i), QE(i),′−′)

V (i, j − 1) + M(′−′, ·, SD(j))

W (i, j − 1) + f̂acc(j − 1)

(3)

and

W (i, j) = max


V (i, j) + go + f̂don(i + 1)

W (i, j − 1) + ge
, (4)

where go and ge are the intron opening and extension scores. The gdon(i)
and gacc(i) are scoring functions for splice sites at position i in the
sequence, which take the form f̂acc(i) := facc(gacc(i)) and f̂don(i) :=
fdon(gdon(i)). Here gacc(i) and gdon(i) are the splice site score precom-
puted by the splice site SVMs (cf. Section 2.1) and facc, fdon : R → R are
scoring function appropriately transforming the SVM outputs.2.

It can easily be verified that for each identified intron between positions k
and j, the above recurrences add a score depending on its length j − k and
the splice site strengths given as follows:

fI(k, j) = go + ge(j − k − 1) + fdon(gk) + facc(gj).

2.2.4 Extension 3: Non-affine Intron Length Model If we would
like to score the intron length with an arbitrary function fL : N+ → R, i.e.

fI(k, j) = fL(j − k) + fdon(gk) + facc(gj),

the recurrence can be implemented as follows:

V (i, j) = max

8>>>>><>>>>>:

0
V (i− 1, j − 1) + M(SE(i), QE(i), SD(j))

V (i− 1, j) + M(SE(i), QE(i),′−′)
V (i, j − 1) + M(′−′, ·, SD(j))

max
j−Lmax≤k≤j−1

(V (i, k) + fI(k, j))

, (5)

where Lmax is the maximal intron length. This recurrence has been pro-
posed in Schulze et al. (2007) in a similar form and is considerably more
computationally expensive than the previous one: every step involves fin-
ding the optimal intron start (O(Lmax)), leading to the complexity of the
dynamic programming algorithm of O(mnLmax). For long introns this
approach seem computationally infeasible.

For completeness we need to extend our notation for alignments with
introns. We use again alignment pairs A = {(ar, br)}r , but extend the
alphabet for ar to Σ∪{+} (“intron sequence missing”) and for br to Σ∪{∗}
(“intron sequence”). Note that br should only contain strings of length grea-
ter than one if ar = ′+′. Then the score f(A) for an alignment A with
intron is computed as before, i.e.

P
r M(ar, br), except when ar = +: In

this case the intron score function fI(·, ·) is used to score the corresponding
intron.

2 When there is no donor consensus at position i, then we define
fdon(gdon(i)) := −∞ (analogously for facc(gacc(i)))
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2.3 Solving the Inverse Alignment Problem
In the previous section we assumed that the functions facc, fdon and fL

as well as the 36 scoring functions for the quality as represented by M
were given. We now describe an algorithm to determine these parameters
based on the training set of sequences (with quality scores) and their true ali-
gnments. This algorithm has been proposed before in Schulze et al. (2007)
based on the original ideas in Altun et al. (2003) for slightly the simpler case
without quality information. We therefore only outline the basic idea of the
algorithm—more details are found in Schulze et al. (2007).

2.3.1 Parametrization Each of the functions to be determined is one-
dimensional. It therefore suffices to use a simple piecewise linear model: Let
s be the number of supporting points xi (satisfying xi < xi+1) and yi their
values, then the piecewise linear function is defined by

f(x) =

8><>:
y1 x ≤ x1

yi(xi+1−x)+yi+1(x−xi)

xi+1−xi
xi ≤ x ≤ xi+1

ys x ≥ xs

. (6)

After having appropriately chosen supporting points on the x-axis we only
need to optimize the corresponding y-values.

Note that given the support points and their corresponding y-values, the
alignment function f(A) for an alignment A is fully specified. Moreover,
by design the scoring function is linear in all parameters, i.e. the y-values.
Hence, it can be written as f(A) = Φ(A)>θ for an appropriately defined
Φ, where θ is the vector of parameters corresponding to the y-values at the
support points of all functions.

2.3.2 Optimization For training we are given a set of N true ali-
gnments A+

i , i = 1, . . . , N . The goal is to find the parameters θ of the
alignment scoring function f such that the difference of scores fθ(A+

i ) −
fθ(A−) is large for all wrong alignments A− 6= A+

i . This can be done by
solving the following convex optimization problem:

min
ξ≥0,θ

1

N

NX
i=1

ξi + CP(θ) (7)

s.t. fθ(A+
i )− fθ(A−) ≥ 1− ξi ∀i and A− 6= A+

i .

Here we introduced so-called slack-variables ξi to implement a soft-margin
(Cortes and Vapnik, 1995), i.e. to allow for a few misaligned examples.
Additionally, we use a regularization term P(θ) to avoid over-fitting by
preferring smooth piece-wise linear functions (see Schulze et al. (2007) for
details). The parameter C controls the trade-off between smoothness and fit
to the training data. Note that the above optimization problem has too many
constraints to be solved directly. In Schulze et al. (2007) we give a detai-
led description of an algorithm based on column generation for iteratively
solving such optimization problems. This algorithm requires computing
best-scoring alignments for suboptimal parameter settings. This can be done
by using the corresponding version of the Smith-Waterman algorithm.

2.4 In silico Generation of Spliced Reads
We sequenced the A. thaliana reference genome using the Illumina Genome
Analyzer producing reads of length 36.3 From the 80, 344, 405 reads that
passed initial quality filtering, 71, 580, 097 reads (89%) could be aligned
against the A. thaliana reference sequence using vmatch (Abouelhoda et al.
(2002), available at http://www.vmatch.de) resulting in an average
coverage of 16. For each read only the best matches (measured by E-value)
were considered allowing up to 4 mismatches or 3 gaps. More than 67% of
the reads align without error, 92% with less than 3 mismatches.

Based on the TAIR 7 genome annotation (available at http://www.
arabidopsis.org), we identified pairs of reads that can be combined to

3 Data was provided by Detlef Weigel, Richard Clark and Christa Lanz,
personal communication.

a 36nt sequence read spanning over an annotated intron.4 We additionally
require that the quality scores around the junction are similar—otherwise
the method might identify the junction by judging the differences in quality
scores which we would like to avoid. All possible pairs around a junction
were considered, but each read was used at most once in a merged pair. We
also generated a list of reads completely contained within annotated exons as
unspliced reads. This lead to 246, 586 merged (“spliced”) and 2, 339, 584
original (“unspliced”) reads aligned to the forward strands of chromosome 1.

2.5 An Alignment Pipeline Against Whole Genomes
Computation of optimal alignments is quite time consuming given the large
number of reads produced by next generation sequencing approaches. We
therefore designed a multi-step approach combining a fast matching algo-
rithm based on enhanced suffix arrays (vmatch, Abouelhoda et al., 2002) for
initial read mapping and the proposed optimal alignment algorithm based on
dynamic programming (QPALMA) for high quality detection of splice sites.
An overview of this pipeline is given in Figure 2.

In a first step we use vmatch to find global alignments of all reads (with
at most two mismatches) against the genome to identify the large fraction
of unspliced reads. The set of successfully aligned reads presumably still
contains a small fraction of spliced reads where the intron is near the read
boundary. To identify such reads we used QPALMA’s scoring function to
develop a filter that can quickly decide whether the read is spliced or not.5

The idea is to compute the scoring function of the alignment returned by
vmatch and compare it with the scores of possible spliced alignments:

• all combinations of putative donor splice sites within the read and
acceptor splice sites ≤2000nt downstream of the read, and

• all combinations of putative acceptor splice sites within the read and
donor splice sites ≤2000nt upstream of the read.

If there exists a combination with larger score than the unspliced alignment,
then the filter predicts the read to be spliced and unspliced otherwise.

Reads that cannot be aligned in the first vmatch round fall into two cate-
gories: low quality reads or spliced reads. In the second step these left-over
reads as well as reads that were predicted to be spliced by the QPALMA filter
are aligned with about half the read’s length using vmatch to produce seeds
for further alignment steps. We use a reasonably sized window (2000nt)
around each “hit” to align using QPALMA. If a seed exists at several geno-
mic locations, then it is crucial that we report the correct alignment position.
This is done by comparing QPALMA’s alignments scores for each seed and
selecting the seed with the highest score.

The error rate of the above pipeline is determined by three factors: 1.
Can the QPALMA filter correctly decide whether a read is unspliced or
spliced, even if there exists reasonable full-length unspliced alignment? 2.
Can QPALMA correctly identify the correct vmatch seed? 3. Can QPALMA
identify the correct exon boundaries?

As shown in Figure 3, the error rates will be highest for reads were the
intron is very near the read boundary. These errors are due to the resulting
very short exons leading to ambiguities that result in either falsely unspliced
alignments (important for 1.) or spliced alignments with a wrong placement
of the shorter exon (important for 3.). While the first case is rather difficult to
identify, the second one is easily identifiable by the predicted intron position.
Hence, a possible strategy to reduce the number of alignment errors would
be to ignore all spliced alignments that are too close to the read boundaries.

Alternatively, we propose to align all reads against the flanking sequences
of each predicted intron (unspliced global alignment). Ideally we will find
several other alignments of reads confirming the putative intron. The total
number of reads confirming the intron without mismatches near the intron

4 If a gene has several annotated transcripts, we only considered the first
one.
5 In the filter we only consider a small set of possible alignments. This can
be computed many times faster than the dynamic program.
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boundary can be used as a confidence measure for the intron, which we call
the remapping score. We expect that the error drops drastically if one requi-
res high remapping scores for introns. Hence, if the transcriptome coverage
is high enough, one can significantly improve upon the single read alignment
accuracy.

Fig. 2. Proposed alignment pipeline for using QPALMA: Short sequence
reads are first aligned with vmatch to identify unspliced reads. Unmapped or
potentially spliced reads are aligned again to identify reads of at least half of
the read length to find seeds for use with QPALMA. For each seed position
QPALMA aligns the read and returns a score. The best scoring alignment is
returned as the spliced alignment of the read, if the intron can be confirmed
at least two times by another read.

3 EXPERIMENTS
3.1 Comparison of Smith-Waterman Extensions
In this section we compare the different extensions of the Smith-
Waterman algorithm (Section 2.2) in combination with the learning
algorithm outlined in Section 2.3. We trained the algorithm using
10, 000 sequences with known alignments (as described in Sec-
tion 2.4) in eight different combinations resulting from switching
on and off the three different scorings: quality information, splice
site predictions6 and intron length.

We test our algorithm on 30, 000 sequences different from the
training set for an unbiased estimation of QPALMA’s accuracy on
unspliced reads. We compute the fraction of reads that have been
accurately aligned at all four boundaries (start and end of first and
second exon). The results are given in Table 1. We can observe
that the algorithm without using any additional information has the
largest error rate of about 14.19%. If we include quality score infor-
mation, then the error rate reduces by 0.7% to 13.49%—a moderate
improvement showing that the quality information can indeed help
to identify the correct alignment. If we additionally include the
splice site predictions, then the error rate drastically reduces by
10.68% to 2.81%. This shows that it is not sufficient to just consider
the splice site consensus to achieve a good alignment: an accurate
splice site detector can significantly decrease the error rate. Finally,
we also include the intron length into the model. It leads to an
additional improvement of about 1.03% to 1.78%. We can there-
fore conclude that all three components—quality scores, splice site

6 When we do not use splice site predictions, we still require the presence
of the GT/AG consensus at the intron boundaries.

Quality Intron Splice Error
information length site pred. rate

- - - 14.19 %
+ - - 13.49 %
- + - 9.96 %
+ + - 9.68 %

- - + 3.16 %
+ - + 2.81 %
- + + 1.94 %
+ + + 1.78%

Table 1. Shown are the alignment error rates for different versions of
QPALMA (without the vmatch seeds) trained on 10, 000 in silico spli-
ced reads: with and without read quality information, intron length scoring
and splice site predictions, respectively. Evaluation was done on 30, 000
reads aligned to their genomic origin including 1,500nt up- and downstream
sequence. A read is counted as correctly aligned if the intron boundaries as
well as the alignment ends exactly matched the template.

Fig. 3. Error rate vs. intron position: On the x-axis is the intron position
(equal to the length of the first exon). On the y-axis is the alignment error
rate for reads with introns at the given position (estimated from 120, 000
spliced reads). We observe that reads leading to very short exons have the
largest error rate and contribute most to the overall error.

predictions and intron length—help to reduce the alignment error
rate.

In the generation of the spliced sequences we also included many
cases where the smaller part (in one of the exons) is very short. In
Figure 3 we show the error rate separately for every intron posi-
tion: If the intron is near the boundary, then one exon is very short.
Not entirely surprising, we observe that most mistakes are made for
cases where the smaller part is 4nt or smaller, especially since it is
known that there is a drastic increase of errors at the end of reads.
If we exclude such cases from the evaluation, then the total error
rate on the test set reduces from 1.78% to about 0.51%. It therefore
seems to be a reasonable strategy not to consider alignments where
one of the exon parts is not longer than 4nt (in our case about 20%
of all spliced reads).

3.2 Illustration of the Learning Result
In Figures 4 and 5 we have displayed the parameters that are the
result of our learning algorithm for the case with quality infor-
mation, splice site predictions and intron length. Shown are the
piece-wise linear functions scoring splice sites (Figure 4) as well
as matches, mismatches, N’s (on DNA) and deletions (on DNA).
We observe that the quality scoring functions cluster into the four

5



De Bona et al

Fig. 4. Learned piece-wise linear functions to score acceptor and donor
splice sites: High probabilities for splice sites contribute strongly to the
alignment score.

Fig. 5. Learned piece-wise linear functions to score matches (4x green),
mismatches (12x red), N’s (5x black) and deletions (5x blue). Larger quality
scores for matches contribute stronger to the alignment score. Mismatches
with larger quality score receive a lower alignment score than with medium
sized quality scores.

groups. Within the groups the variation is relatively small indicating
that there are no strong biases in the quality scores for certain error
combinations in our data.

3.3 Results on Whole Genome Alignments
We finally present results on a relatively large dataset using the
pipeline described in Figure 2. The dataset used is a subset of the
71 × 106 reads mentioned before and contains a total number of
2.98 × 106 reads from the transcribed part of the positive strand of
chromosomes I-V (as annotated), out of which about 10% are spli-
ced (285, 530 reads). Please note that we omitted the 10, 000 spliced
reads used for training QPALMA in following analysis.

3.3.1 Data Flow In a first step we use vmatch to align all reads
(cf. Figure 2). The alignment step was parametrized to consider the
whole 36-mer and to allow for two mismatches and no gaps. From
this vmatch run we obtained a set of reads that could be aligned of
2, 511, 338 and 471, 009 reads that could not be aligned with the
given mismatches and read length. Ideally the first set of aligned
reads would only contain unspliced reads. The previously descri-
bed QPALMA filter was able to identify 43, 148 reads in this set
that are actually spliced (8, 964 false positives out of 2.51 × 106).
The 471, 009 unalignable reads in the first vmatch round are aligned

Fig. 6. Remapping score distribution for correctly and incorrectly aligned
reads. Most correctly aligned reads can be confirmed by at least one other
read, while incorrectly aligned reads are rarely confirmed more than once.

again using vmatch with at least 18nt alignment length and at most
one mismatch. In this run, for 12, 864 (3, 428 spliced and 9, 436
unspliced) reads no alignment could be found on the positive strand
of chromosomes I-V.7 In the next step we used QPALMA to align
the 52, 112 reads found by the QPALMA filter together with the ali-
gnable part (458, 145) in the second vmatch round: 230, 795 reads
were determined to be unspliced and 269, 631 reads to be spliced.

3.3.2 Pipeline Accuracy Out of the 2, 696, 817 unspliced reads
in total, 14, 566 reads were either without seed on the positive strand
of chromosomes I-V (9, 566) or aligned to the wrong genomic posi-
tion (5, 000). 18, 696 were aligned spliced, leading to a total error
rate of unspliced reads of 1.2%. From the 275, 530 spliced reads,
2, 556 and 3, 675 were aligned unspliced by QPALMA filter and
QPALMA, respectively, and 8, 189 were aligned wrongly, i.e. with
wrong exon boundaries. This leads to an error rate of spliced reads
of 5.2%. Out of the latter 8, 189 sequences a large fraction (7, 129)
were aligned wrongly due to a wrong vmatch seed position. If we
exclude such reads, we observe that 7, 291 spliced reads are misa-
ligned due to QPALMA, leading to an error rate of 2.6%. This is
only slightly higher than previously observed (cf. Table 1). In total
51, 313 reads out of the 2, 982, 347 reads where either unaligned or
aligned incorrectly, leading to an error rate of the pipeline of 1.8%.

If we only consider spliced alignments that can be confirmed by
at least two other reads,8 the number of wrongly aligned spliced
reads drops from 8, 189 to 1, 990, while one loses about 10% of
the spliced reads (cf. Figure 6). Out of the 18, 696 unspliced reads
predicted as spliced, not a single one remained. Hence, the total
error rate reduces to 0.9%.

It can be observed that most errors are induced by wrong or mis-
sing vmatch seed positions (0.7%). Also, often (0.6%) unspliced
reads were predicted as spliced. The latter errors can be reliably
detected by requiring three reads confirming a spliced alignment.

3.3.3 Computing Time The total time needed for the running the
pipeline on ≈ 2.5 million reads is given in Table 2 (on a single
CPU core). If scaled to the about 71 million reads from the whole
genome, the alignment using this pipeline would take about 400h of
computing time. Distributed on 20 CPU nodes it is just about one
day of computing time.

7 Note that we allowed up to four mismatches for the initial vmatch ali-
gnment to derive the in silico data set. In the pipeline we only allowed two
mismatches, which leads to a small fraction of reads with no match.
8 For each splice site 34nt 5’ to the donor side and 34nt 3’ to the acceptor
site have been concatenated and were realigned using all reads with a maxi-
mum of 2 mismatches (no indels). A splice site has been rejected if not more
than three reads covered the 4nt around the splice site without mismatches.
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Step total time number of reads reads/sec
Vmatch runs ≈ 4h 2, 586, 170 179

QPALMA filter ≈ 17min 2, 180, 858 417
QPALMA prediction ≈ 8h 441, 579 15

Remapping score ≈ 10 min 249, 001 733

QPALMA training ≈ 6 h 10, 000 0.5

Table 2. CPU times of the different processing steps on a single CPU core.
Training is only required once per genome.

The total computing time is dominated by the QPALMA pre-
diction step (≈ 8h). This can be speedup by either improving
the implementation (e.g. by exploiting special CPU features, as in
SHRiMP) or by using the approximation of the QPALMA filter for
computing the alignment (≈ 30 times faster). Training of QPALMA
took about 6h on 10, 000 reads. However, this is only required once
per genome and sequencing platform and does not matter for the
application of the pipeline.

4 DISCUSSION
We have presented a novel approach to solve the difficult task
of aligning short sequence reads as generated by next genera-
tion sequencing techniques over exon boundaries. We were able
to successfully exploit all available information sources—the read
including its quality information, splice site predictions, the intron
length and, of course, the genome—each significantly contributing
to decreasing the alignment error rate. If we only consider spliced
reads that significantly overlap into the exon (> 4nt), the error rates
is as small as 0.5%. For reads that only overlap 1-2nt into the next
or previous exon, the error rate can be as high as 12%, which is as
expected, as random matches are quite likely. If the transcriptome
coverage is high enough, the proposed remapping score can be used
to find the doubtful alignments in order to significantly reduce the
alignment error rate.

So far we have only used QPALMA for the Illumina sequencing
platform. The same approach is expected to work reasonably well
also for other NG sequencing platforms, as all parameters are tuned
during training to work well for the considered platform. The only
precondition is that there are genomic reads available that can be
used to generate artificially spliced reads for training. QPALMA
also learns how to score the quality information of the read. While
QPALMA can adapt to other or even multiple quality scores, so
far the scoring scheme is independently for every position. For
instance, for Roche’s 454 sequencing platform, it can be beneficial
to extend the scoring model to appropriately model homo-polymer
errors (e.g. by introducing additional states in the dynamic program
for extending homo-polymers).

It appears interesting to include the downstream analysis of deri-
ving the gene structure based on these reads into the pipeline and
to estimate its error as well. This will be particularly interesting for
predicting gene structures with alternative transcripts.
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Meir, R. and Rätsch, G. (2003). An introduction to boosting and leveraging. In S. Men-
delson and A. Smola, editors, Advanced Lectures on Machine Learning, LNCS,
pages 119–184. Springer.

Mott, R. (1998). Trace alignment and some of its applications. Bioinformatics, 14(1),
92–97.
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