Boosting Algorithms for Maximizing the Soft Margin

Gunnar Rätsch

Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany

February 11, 2008

4th Workshop on Ensemble Methods
Protocol of Boosting

- Maintain a distribution d^t on the examples
- At iteration $t = 1, \ldots, T$:
 - Receive a "weak" hypothesis h_t
 - Update d^t to d^{t+1}, put more weights on "hard" examples
- Output a convex combination of the weak hypotheses

$$f(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$$

[Freund & Schapire, 1995]
Protocol of Boosting

- Maintain a distribution d^t on the examples
- At iteration $t = 1, \ldots, T$:
 1. Receive a “weak” hypothesis h_t
 2. Update d^t to d^{t+1}, put more weights on “hard” examples
- Output a convex combination of the weak hypotheses

$$f(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$$

[Freund & Schapire, 1995]
Introduction to Boosting

Protocol of Boosting

- Maintain a distribution d^t on the examples
- At iteration $t = 1, \ldots, T$:
 1. Receive a “weak” hypothesis h_t
 2. Update d^t to d^{t+1}, put more weights on “hard” examples
- Output a convex combination of the weak hypotheses

$$f(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$$

[Freund & Schapire, 1995]
First hypothesis:

- **Error rate:** \(\frac{2}{11} \)

\[
\epsilon_t = \frac{1}{N} \sum_{n=1}^{N} d_t^n \mathbb{1}(h_t(x_n) = y_n)
\]

- **Edge:** \(\frac{9}{22} \)

\[
\gamma_t = \frac{1}{N} \sum_{n=1}^{N} d_t^n y_n h_t(x_n)
= 1 - 2 \epsilon_t
\]
Boosting: 1st Iteration

First hypothesis:

- Error rate: $\frac{2}{11}$

\[
\epsilon_t = \sum_{n=1}^{N} d^t_n \mathbb{1}(h_t(x_n) = y_n)
\]

- Edge: $\frac{9}{22}$

\[
\gamma_t = \sum_{n=1}^{N} d^t_n y_n h_t(x_n) = 1 - 2\epsilon_t
\]
Update Distribution

Misclassified examples \Rightarrow Increased weights

After update:
- Error rate:
 \(\epsilon(h_t, d^{t+1}) = \frac{1}{2} \)
- Edge:
 \(\gamma(h_t, d^{t+1}) = 0 \)
Introduction to Boosting

Update Distribution

Misclassified examples \Rightarrow Increased weights

After update:
- Error rate:
 \[\epsilon(h_t, d^{t+1}) = \frac{1}{2} \]
- Edge:
 \[\gamma(h_t, d^{t+1}) = 0 \]
Before 2nd Iteration
Boosting: 2nd Hypothesis

Edge $\gamma > \delta$
Update Distribution

Edge $\gamma = 0$

AdaBoost update sets edge of last hypothesis to 0
Introduction to Boosting

Boosting: 3rd Hypothesis

- Boosting Algorithms for Large Soft Margins
- February 11, 2008
Boosting: 4th Hypothesis
All Hypotheses

- leicht
- schwer
- nicht rot
- sehr rot
Decision: \(f_\alpha(x) = \sum_{t=1}^{T} \alpha_t h_t(x) > 0 \)
Introduction to Boosting

Large Margin and Linear Separation

Input space \mathcal{X}

Feature space \mathcal{F}

Linear separation in \mathcal{F} is nonlinear separation in \mathcal{X}

$\Phi(\mathbf{x}) = \begin{pmatrix} h_1(\mathbf{x}) \\ h_2(\mathbf{x}) \\ \vdots \end{pmatrix}$

$\mathcal{H} = \{ h_1, h_2, \ldots \}$

[O. Mangasarian, 1999; G.R., Mika, Schölkopf & Müller, 2002]
Margin of the combined hypothesis f_α for example (x_n, y_n)

$$\rho_n(\alpha) = y(\Phi(x) \cdot \alpha)$$

$$= y_n f_\alpha(x_n)$$

$$= y_n \sum_{t=1}^{T} \alpha_t h_t(x_n) \quad (\alpha \in \mathcal{P}^T)$$

Margin of set of examples is minimum over examples

$$\rho(\alpha) := \min_n \rho_n(\alpha)$$

[Freund, Schapire, Bartlett & Lee, 1998]
Edge vs. Margin

Edge
- Measurement of “goodness” of a hypothesis w.r.t. a distribution
- Edge of a hypothesis \(h \) for a distribution \(d \) on the examples

\[
\gamma_h(d) = \sum_{n=1}^{N} d_n y_n h(x_n) \quad d \in \mathcal{P}^N
\]

Margin
- Measure for “confidence” in prediction for a hypothesis weighting
- Margin of example \(n \) for current hypothesis weighting \(\alpha \)

\[
\rho_n(\alpha) = y_n f_{\alpha}(x_n) = y_n \sum_{t=1}^{T} \alpha_t h_t(x_n) \quad (\alpha \in \mathcal{P}^T)
\]

What is the connection? [Breiman, 1999]
Edge vs. Margin

Edge
- Measurement of “goodness” of a hypothesis w.r.t. a distribution
- Edge of a hypothesis h for a distribution d on the examples
 \[
 \gamma_h(d) = \sum_{n=1}^{N} d_n y_n h(x_n) \quad d \in \mathcal{P}^N
 \]

Margin
- Measure for “confidence” in prediction for a hypothesis weighting
- Margin of example n for current hypothesis weighting α
 \[
 \rho_n(\alpha) = y_n f_\alpha(x_n) = y_n \sum_{t=1}^{T} \alpha_t h_t(x_n) \quad (\alpha \in \mathcal{P}^T)
 \]

What is the connection?

[Breiman, 1999]
Edge vs. Margin

Edge
- Measurement of “goodness” of a hypothesis w.r.t. a distribution
- **Edge of a hypothesis** h for a distribution d on the examples
 \[
 \gamma_h(d) = \sum_{n=1}^{N} d_n y_n h(x_n) \quad d \in \mathcal{P}^N
 \]

Margin
- Measure for “confidence” in prediction for a hypothesis weighting
- **Margin of example** n for current hypothesis weighting α
 \[
 \rho_n(\alpha) = y_n f_\alpha(x_n) = y_n \sum_{t=1}^{T} \alpha_t h_t(x_n) \quad (\alpha \in \mathcal{P}^T)
 \]

What is the connection? [Breiman, 1999]
von Neumann's Minimax-Theorem

Set of examples \(S = \{(x_1, y_1), \ldots, (x_N, y_N)\} \)
and hypotheses set \(\mathcal{H}^t = \{h_1, \ldots, h_t\} \),

minimum edge: \(\gamma_t^* = \min \max_{d \in \mathcal{P}^N} \max_{h \in \mathcal{H}^t} \gamma_h(d) \)

maximum margin: \(\rho_t^* = \max \min_{\alpha \in \mathcal{P}^t} y_n f_\alpha(x_n) \)

Duality: \(\gamma_t^* = \rho_t^* \)

[von Neumann, 1928]
Duality gap

For any non-optimal \(d \in P^N \) and \(\alpha \in P^t \),

\[
\gamma(d) \geq \gamma_t^* = \rho_t^* \geq \rho(\alpha)
\]
For any non-optimal $d \in \mathcal{P}^N$ and $\alpha \in \mathcal{P}^t$,

$$\gamma(d) \geq \gamma_t^* = \rho_t^* \geq \rho(\alpha)$$
How Large is the Maximal Margin?

Assumptions on Weak learner

For any distribution \(d \) on the examples, the weak learner returns a hypothesis \(h \) with edge \(\gamma_h(d) \) at least \(g \).
Best case: \(g = \rho^* = \gamma^* \).

[Breiman, 1999; Bennett et al.; G.R. et al., 2001; Rudin et al., 2004]
How Large is the Maximal Margin?

Assumptions on Weak learner

For any distribution d on the examples, the weak learner returns a hypothesis h with edge $\gamma_h(d)$ at least g.

Best case: $g = \rho^* = \gamma^*$.

Implication from Minimax Theorem

There exists $\alpha \in \mathcal{P}^N$, such that $\rho(\alpha) \geq g$.

[Breiman, 1999; Bennett et al.; G.R. et al., 2001; Rudin et al., 2004]
How Large is the Maximal Margin?

Assumptions on Weak learner

For any distribution d on the examples, the weak learner returns a hypothesis h with edge $\gamma_h(d)$ at least g. Best case: $g = \rho^* = \gamma^*$.

Implication from Minimax Theorem

There exists $\alpha \in \mathcal{P}^N$, such that $\rho(\alpha) \geq g$.

Idea to iteratively solve LP: LPBoost

Add “best” hypothesis $h = \arg\max \gamma_h(d^t)$ to \mathcal{H}^{t+1} and resolve

$$d^{t+1} = \arg\min_{d \in \mathcal{P}^N} \max_{h \in \mathcal{H}^{t+1}} \gamma_h(d).$$

[Breiman, 1999; Bennett et al.; G.R. et al., 2001; Rudin et al., 2004]
How Large is the Maximal Margin?

Assumptions on Weak learner

For any distribution \(d \) on the examples, the weak learner returns a hypothesis \(h \) with edge \(\gamma_h(d) \) at least \(g \).

Best case: \(g = \rho^* = \gamma^* \).

What about AdaBoost?

- May “oscillate”
- Does not find maximizing \(\alpha \) (counter examples)
- But there some guarantees:
 - \(\rho(\alpha^t) \geq 0 \) after \(2 \ln N/g^2 \) iterations
 - \(\rho(\alpha^t) \geq g/2 \) in the limit

[Breiman, 1999; Bennett et al.; G.R. et al., 2001; Rudin et al., 2004]
How to **Maximize** the Margin?

Modify AdaBoost for maximizing margin

- **Arc-GV** asymptotically maximizes the margin
 - quite slow, no converge rates
- **LPBoost** uses a Linear Programming solver
 - Often very fast in practice, but no converge rates
- **AdaBoost** requires \(\frac{2 \log(N)}{\delta^2} \) iterations to get \(\rho^t \in [\rho^* - \delta, \rho^*] \)
 - Slow in practice: just as fast as theory predicts
- **TotalBoost** requires \(\frac{2 \log(N)}{\delta^2} \) iterations to get \(\rho^t \in [\rho^* - \delta, \rho^*] \)
 - Fast in practice
 - Combination of benefits

[Breiman, 1999, G.R. & Warmuth, 2004; Warmuth et al., 2006]
How to **Maximize** the Margin?

Modify AdaBoost for maximizing margin

- **Arc-GV** asymptotically maximizes the margin
 - quite slow, no converge rates
- **LPBoost** uses a Linear Programming solver
 - Often very fast in practice, but **no converge rates**
- **AdaBoost** requires $\frac{2\log(N)}{\delta^2}$ iterations to get $\rho^t \in [\rho^* - \delta, \rho^*]$
 - Slow in practice: just as fast as theory predicts
- **TotalBoost** requires $\frac{2\log(N)}{\delta^2}$ iterations to get $\rho^t \in [\rho^* - \delta, \rho^*]$
 - Fast in practice
 - Combination of benefits

[Breiman, 1999, G.R. & Warmuth, 2004; Warmuth et al., 2006]
How to Maximize the Margin?

Modify AdaBoost for maximizing margin

- **Arc-GV** asymptotically maximizes the margin
 - quite slow, no converge rates
- **LPBoost** uses a Linear Programming solver
 - Often very fast in practice, but no converge rates
- **AdaBoost** requires $\frac{2\log(N)}{\delta^2}$ iterations to get $\rho_t \in [\rho^* - \delta, \rho^*]$ but slow in practice: just as fast as theory predicts
- **TotalBoost** requires $\frac{2\log(N)}{\delta^2}$ iterations to get $\rho_t \in [\rho^* - \delta, \rho^*]$ but fast in practice
 - Combination of benefits

[Breiman, 1999, G.R. & Warmuth, 2004; Warmuth et al., 2006]
How to **Maximize** the Margin?

Modify AdaBoost for maximizing margin

- **Arc-GV** asymptotically maximizes the margin
 - quite slow, no converge rates
- **LPBoost** uses a Linear Programming solver
 - Often very fast in practice, but no converge rates
- **AdaBoost*** requires \(\frac{2 \log(N)}{\delta^2} \) iterations to get \(\rho^t \in [\rho^* - \delta, \rho^*] \)
 - Slow in practice: just as fast as theory predicts
- **TotalBoost** requires \(\frac{2 \log(N)}{\delta^2} \) iterations to get \(\rho^t \in [\rho^* - \delta, \rho^*] \)
 - Fast in practice
 - Combination of benefits

[Breiman, 1999, G.R. & Warmuth, 2004; Warmuth et al., 2006]
Idea: Projections to $\hat{\gamma}_t$ instead of 0

Separation

$$\min_{d \in \mathcal{P}^N} \Delta(d, d^t)$$

s.t.

$$\sum_{n=1}^{N} d_n y_n h_t(x_n) \leq 0 \quad \text{for } r = 1, \ldots, t$$

Large Margin Separation

$$\min_{d \in \mathcal{P}^N} \Delta(d, d^t)$$

s.t.

$$\sum_{n=1}^{N} d_n y_n h_t(x_n) \leq \hat{\gamma}_t \quad \text{for } r = 1, \ldots, t$$

[G.R. & Warmuth, 2004]
Want margin $\geq g - \delta$

Assumption: $\gamma_t \geq g$

Estimate of target: $\hat{\gamma}_t = (\min_{q=1,...,t} \gamma_q) - \delta$
Want margin $\geq g - \delta$

Assumption: $\gamma_t \geq g$

Estimate of target: $\hat{\gamma}_t = (\min_{q=1,\ldots,t} \gamma_q) - \delta$
Corrective vs. Totally Corrective Updates

Corrective: Single constraint

\[
\min_{d \in \mathcal{P}^N} \Delta(d, d^t) \quad \text{(AdaBoost*)}
\]

\[
\text{s.t.} \quad \sum_{n=1}^{N} d_n y_n h_t(x_n) \leq \hat{\gamma}_t \quad \text{for } r = 1, \ldots, t
\]

Totally corrective: One constraint per past weak hypothesis

\[
\min_{d \in \mathcal{P}^N} \Delta(d, d^1) \quad \text{(TotalBoost)}
\]

\[
\text{s.t.} \quad \sum_{n=1}^{N} d_n y_n h_r(x_n) \leq \hat{\gamma}_t \quad \text{for } r = 1, \ldots, t
\]

[Kivinen & Warmuth, 1999; Warmuth et al., 2006]
TotalBoost_\delta

1. **Input:** $S = \langle (x_1, y_1), \ldots, (x_N, y_N) \rangle$, desired accuracy δ
2. **Initialize:** $d_n^1 = 1/N$ for all $n = 1 \ldots N$
3. **Do for** $t = 1, \ldots$
 1. Train classifier on $\{S, d^t\}$ and obtain hypothesis $h_t: x \mapsto [-1, 1]$ and let $u_i^t = y_i h_t(x_i)$
 2. Calculate the edge γ_t of h_t: $\gamma_t = d^t \cdot u^t$
 3. Set $\hat{\gamma}_t = (\min_{q=1,\ldots,t} \gamma_q) - \delta$ and solve
 $d^{t+1} = \text{argmin}_{\{d \in \mathcal{P}^N \mid d \cdot u^q \leq \hat{\gamma}_t, \text{ for } 1 \leq q \leq t\}} \Delta(d, d^1)$
 \{C_t\}
 4. **If** above infeasible or d^{t+1} contains a zero
 then $T = t$ and break

4. **Output:** $f_\alpha(x) = \sum_{t=1}^T \alpha_t h_t(x)$, where the coefficients α_t maximize margin over hypotheses set $\{h_1, \ldots, h_T\}$.
TotalBoost\(\delta\)

1. **Input:** \(S = \langle (x_1, y_1), \ldots, (x_N, y_N) \rangle\), desired accuracy \(\delta\)
2. **Initialize:** \(d^1_n = 1/N\) for all \(n = 1 \ldots N\)
3. **Do for** \(t = 1, \ldots\)
 1. Train classifier on \(\{S, d^t\}\) and obtain hypothesis \(h_t: x \mapsto [-1, 1]\) and let \(u^t_i = y_i h_t(x_i)\)
 2. Calculate the edge \(\gamma_t\) of \(h_t\): \(\gamma_t = d^t \cdot u^t\)
 3. Set \(\hat{\gamma}_t = (\min_{q=1, \ldots, t} \gamma_q) - \delta\) and solve
 \[
 d^{t+1} = \underset{d \in \mathcal{P}^N}{\text{argmin}} \Delta(d, d^1) \\
 \{d \in \mathcal{P}^N \mid d \cdot u^q \leq \hat{\gamma}_t, \text{ for } 1 \leq q \leq t\} = \mathcal{C}_t
 \]
 4. If above infeasible or \(d^{t+1}\) contains a zero
 then \(T = t\) and break
4. **Output:** \(f_\alpha(x) = \sum_{t=1}^T \alpha_t h_t(x)\), where the coefficients \(\alpha_t\)
 maximize margin over hypotheses set \(\{h_1, \ldots, h_T\}\).
TotalBoost_\delta

1. **Input:** \(S = \langle (x_1, y_1), \ldots, (x_N, y_N) \rangle \), desired accuracy \(\delta \)

2. **Initialize:** \(d^1_n = 1/N \) for all \(n = 1 \ldots N \)

3. **Do for** \(t = 1, \ldots \)
 1. Train classifier on \(\{S, d^t\} \) and obtain hypothesis \(h_t : x \mapsto [-1, 1] \) and let \(u^t_i = y_i h_t(x_i) \)
 2. Calculate the edge \(\gamma_t \) of \(h_t \): \(\gamma_t = d^t \cdot u^t \)
 3. Set \(\hat{\gamma}_t = (\min_{q=1,\ldots,t} \gamma_q) - \delta \) and solve

 Optimization Problem

 \[
 d^{t+1} = \arg\min_{d \in C_t} \Delta(d, d^1)
 \]

 with \(C_t := \{d \in \mathcal{P}^N | d \cdot u^q \leq \hat{\gamma}_t, \text{ for } 1 \leq q \leq t\} \)

4. **Output:** \(f_\alpha(x) = \sum_{t=1}^T \alpha_t h_t(x) \), where the coefficients \(\alpha_t \) maximize margin over hypotheses set \(\{h_1, \ldots, h_T\} \).
Iteration Bound \(\left\lceil \frac{2\ln N}{\delta^2} \right\rceil\)

Theorem

Assume the base learner returns hypotheses with edge greater than \(g\), then AdaBoost* and TotalBoost terminate after at most \(\frac{2\ln N}{\delta^2}\) iteration with margin at least \(g - \delta\).

Lemma

For \(d^t, d^{t+1} \in \mathcal{P}^N\) and \(u \in [-1, 1]^N\), if \(\Delta(d^{t+1}, d^t)\) finite and \(d^{t+1} \cdot u \neq d^t \cdot u\) then

\[
\Delta(d^{t+1}, d^t) > \frac{(d^{t+1} \cdot u - d^t \cdot u)^2}{2}
\]

[Warmuth, Liao & G.R., 2006]
Theorem

Assume the base learner returns hypotheses with edge greater than g, then AdaBoost* and TotalBoost terminate after at most $\frac{2\ln N}{\delta^2}$ iteration with margin at least $g - \delta$.

Lemma

For $d^t, d^{t+1} \in P^N$ and $u \in [-1, 1]^N$, if $\Delta(d^{t+1}, d^t)$ finite and $d^{t+1} \cdot u \neq d^t \cdot u$ then

$$\Delta(d^{t+1}, d^t) > \frac{(d^{t+1} \cdot u - d^t \cdot u)^2}{2}$$

[Warmuth, Liao & G.R., 2006]
Generalized Pythagorean Theorem

\[C_t = \{ d \in \mathcal{P}^N \mid d \cdot u^q \leq \hat{\gamma}_t, \ 1 \leq q \leq t \}, \ C_0 = \mathcal{P}^N, \ C_t \subseteq C_{t-1} \]

\(d^t \) is projection of \(d^1 \) onto \(C_{t-1} \) at iteration \(t - 1 \)

\[d^t = \arg\min_{d \in C_{t-1}} \Delta(d, d^1) \]

\[\Delta(d^{t+1}, d^1) \geq \Delta(d^t, d^1) + \Delta(d^{t+1}, d^t) \]

[Herbster & Warmuth, 2001]
Convergence

Sketch of Proof

1: $\Delta(d^2, d^1) - \Delta(d^1, d^1) \geq \Delta(d^2, d^1) > \frac{\delta^2}{2}$

2: $\Delta(d^3, d^2) - \Delta(d^2, d^1) \geq \Delta(d^3, d^2) > \frac{\delta^2}{2}$

\[\vdots\]

\[t: \Delta(d^{t+1}, d^1) - \Delta(d^t, d^1) \geq \Delta(d^{t+1}, d^t) > \frac{\delta^2}{2}\]

\[\vdots\]

\[T - 1: \Delta(d^T, d^1) - \Delta(d^{T-1}, d^1) \geq \Delta(d^T, d^{T-1}) > \frac{\delta^2}{2}\]

Therefore, $T \leq \lceil \frac{2\ln N}{\delta^2} \rceil$

[Warmuth, Liao & G.R., 2006]
Illustrative Experiments

Cox-1 dataset from Telik Inc.
- Relatively small drug-design data set
 - 125 binary labeled examples
 - 3888 binary features
- Compare convergence of margin versus number of iterations
Illustrative Experiments

Cox-1 ($\delta = 0.01$)

- AdaBoost_δ^*
- LPBoost
- TotalBoost$_\delta$

Results

- Corrective algorithms very slow
- LPBoost & TotalBoost need few iterations
- Initial speed crucially depends on δ
Illustrative Experiments

Cox-1 ($\delta = 0.01$)

- AdaBoost*
- LPBoost
- TotalBoost$^\delta$

Results
- Corrective algorithms very slow
- LPBoost & TotalBoost need few iterations
- Initial speed crucially depends on δ

Gunnar Rätsch (FML, Tübingen) Boosting Algorithms for Large Soft Margins February 11, 2008 27 / 38
Illustrative Experiments

Cox-1 ($\delta = 0.01$)

- AdaBoost$_\delta^*$
- LPBoost
- TotalBoost$_\delta$

Results

- Corrective algorithms very slow
- LPBoost & TotalBoost need few iterations
- Initial speed crucially depends on δ
Illustrative Experiments

Cox-1 ($\delta = 0.01$)
- AdaBoost$_\delta$
- LPBoost
- TotalBoost$_\delta$

Results
- Corrective algorithms very slow
- LPBoost & TotalBoost$_\delta$ need few iterations
- Initial speed crucially depends on δ
Illustrative Experiments

Cox-1 ($\delta = 0.01$)
- AdaBoost$_{\delta}^*$
- LPBoost
- TotalBoost$_{\delta}$

Results
- Corrective algorithms very slow
- LPBoost & TotalBoost$_{\delta}$ need few iterations
- Initial speed crucially depends on δ
Illustrative Experiments

Cox-1 ($\delta = 0.01$)
- AdaBoost$_{\delta}$
- LPBoost
- TotalBoost$_{\delta}$

Results
- Corrective algorithms very slow
- LPBoost & TotalBoost$_{\delta}$ need few iterations
- Initial speed crucially depends on δ
LPBoost May Perform Much Worse Than TotalBoost

- Identified cases where LPBoost converges considerably slower than TotalBoost$_\delta$
- Dataset is a series of artificial datasets of 1000 examples with varying number of features created as follows:
 - First generated N_1 random ± 1-valued features x_1, \ldots, x_{N_1} and set the label of the examples as $y = \text{sign}(x_1 + x_2 + x_3 + x_4 + x_5)$
 - Then duplicated each features N_2 times, perturbed the features by Gaussian noise with $\sigma = 0.1$, and clipped the feature values so that they lie in the interval $[-1,1]$
 - Considered different N_1, N_2, the total number of features is $N_2 \times N_1$
LPBoost performs worse for high dimensional data with many redundant features.

LPBoost vs. TotalBoost_δ on two 100,000 dimensional datasets: [left] many redundant features (N_1 = 1,000, N_2 = 100) and [right] independent features (N_1 = 100,000, N_2 = 1). Show margin vs. number of iterations.
Do these algorithms work better in practice?

Do they generalize better?

- **Usually not!** Algorithms just overfit quicker.
- Only slight improvements in the noise free case.

Soft Margins for AdaBoost

1. Limit the *influence* of examples ("AdaBoost$_{reg}$")
 - Heuristic algorithm, no convergence result . . .
 - . . . but works very well in practice
2. Soft margins à la SVMs ("ν-Arc", "SoftBoost")
 - Change optimization problem to include slacks
 - Convergence proofs did not work \Rightarrow only asymptotic results

Do These Algorithms Work Better in Practice?

Do they generalize better?

- **Usually not!** Algorithms just overfit quicker.
- Only slight improvements in the noise free case.

Soft Margins for AdaBoost

1. Limit the *influence* of examples ("AdaBoost\,_{\text{reg}}")
 - Heuristic algorithm, no convergence result . . .
 - . . . but works very well in practice

2. Soft margins à la SVMs ("ν-Arc", "SoftBoost")
 - Change optimization problem to include slacks
 - Convergence proofs did not work \Rightarrow only asymptotic results
 - New: Can prove fast convergence with soft margin (NIPS'07)

Do These Algorithms Work Better in Practice?

Do they generalize better?

- **Usually not!** Algorithms just overfit quicker.
- Only slight improvements in the noise free case.

Soft Margins for AdaBoost

1. Limit the *influence* of examples ("AdaBoost$_{\text{reg}}$")
 - Heuristic algorithm, no convergence result . . .
 - . . . but works very well in practice

2. Soft margins à la SVMs ("ν-Arc", "SoftBoost")
 - Change optimization problem to include slacks
 - Convergence proofs did not work \Rightarrow only asymptotic results
 - **New:** Can prove fast convergence with soft margin (NIPS’07)

Do These Algorithms Work Better in Practice?

Do they generalize better?

- **Usually not!** Algorithms just overfit quicker.
- Only slight improvements in the noise free case.

Soft Margins for AdaBoost

1. **Limit the influence** of examples ("AdaBoost\textsubscript{reg}")
 - Heuristic algorithm, no convergence result . . .
 - . . . but works very well in practice

2. **Soft margins à la SVMs** ("\(\nu\)-Arc", "SoftBoost")
 - Change optimization problem to include slacks
 - Convergence proofs did not work \(\Rightarrow\) only asymptotic results
 - **New:** Can prove fast convergence with soft margin (NIPS’07)

SoftBoost = TotalBoost with ν-Trick

Hard-margin separation

\[
\max_{\rho, \xi, \alpha} \rho - \frac{1}{\nu} \sum_{n=1}^{N} \xi_n \\
\text{s.t. } \rho \geq 0, \xi \in \mathbb{R}_+, \alpha \in \mathbb{R}^{|\mathcal{H}|} \\
\text{with } y_n \sum_{j=1}^{\mathcal{H}} \alpha_j h_j(x_n) \geq \rho - \xi_n \\
\text{for } n = 1, \ldots, N.
\]
SoftBoost = TotalBoost with \(\nu \)-Trick

\[
\begin{align*}
\max_{\rho, \xi, \alpha} \quad & \rho - \frac{1}{\nu} \sum_{n=1}^{N} \xi_n \\
\text{s.t.} \quad & \rho \geq 0, \xi \in \mathbb{R}_+, \alpha \in \mathbb{R}^{|\mathcal{H}|} \\
\text{with} \quad & y_n \sum_{j=1}^{\mathcal{H}} \alpha_j h_j(x_n) \geq \rho - \xi_n \\
& \text{for } n = 1, \ldots, N.
\end{align*}
\]

Hard-margin separation with outlier
SoftBoost = TotalBoost with ν-Trick

Soft-margin separation with outlier

Chose margin such that ν examples are within the margin area

$$\max_{\rho, \xi, \alpha} \quad \rho - \frac{1}{\nu} \sum_{n=1}^{N} \xi_n$$

s.t. $\rho \geq 0, \xi \in \mathbb{R}_+, \alpha \in \mathbb{R}^{\mathcal{H}}$

with $y_n \sum_{j=1}^{\mathcal{H}} \alpha_j h_j(x_n) \geq \rho - \xi_n$ for $n = 1, \ldots, N.$
SoftBoost = TotalBoost with \(\nu \)-Trick

Soft-margin separation with outlier

Chose margin such that \(\nu \) examples are within the margin area

\[
\begin{align*}
\max_{\rho, \xi, \alpha} & \quad \rho - \frac{1}{\nu} \sum_{n=1}^{N} \xi_n \\
\text{s.t.} & \quad \rho \geq 0, \xi \in \mathbb{R}_+, \alpha \in \mathbb{R}^{\vert\mathcal{H}\vert} \\
\text{with} & \quad y_n \sum_{j=1}^{\vert\mathcal{H}\vert} \alpha_j h_j(x_n) \geq \rho - \xi_n \\
& \quad \text{for } n = 1, \ldots, N.
\end{align*}
\]
Softboost$_{\delta,\nu}$

1. **Input:** $S = \langle (x_1, y_1), \ldots , (x_N, y_N) \rangle$, desired accuracy δ
2. **Initialize:** $d^1_n = 1/N$ for all $n = 1 \ldots N$
3. **Do for** $t = 1, \ldots$
 1. Train classifier on $\{S, d^t\}$ and obtain hypothesis $h_t : x \mapsto [-1, 1]$ and let $u^t_i = y_i h_t(x_i)$
 2. Calculate the edge γ_t of h_t: $\gamma_t = d^t \cdot u^t$
 3. Set $\hat{\gamma}_t = (\min_{q=1,\ldots,t} \gamma_q) - \delta$ and solve
 $$ d^{t+1} = \arg \min_{\{d \in P^N | d \leq 1/\nu; d \cdot u^q \leq \hat{\gamma}_t, \text{for } 1 \leq q \leq t\}} \Delta(d, d^1) $$
 with C_t
 4. **If** above infeasible or d^{t+1} contains a zero
 then $T = t$ and break

4. **Output:** $f_\alpha(x) = \sum_{t=1}^T \alpha_t h_t(x)$, where the coefficients α_t
maximize margin over hypotheses set $\{h_1, \ldots , h_T\}$.
Softboost$_{\delta,\nu}$

1. **Input:** $S = \langle (x_1, y_1), \ldots, (x_N, y_N) \rangle$, desired accuracy δ
2. **Initialize:** $d_n^1 = 1/N$ for all $n = 1 \ldots N$
3. **Do for** $t = 1, \ldots$
 1. Train classifier on $\{S, d^t\}$ and obtain hypothesis $h_t: x \mapsto [-1, 1]$ and let $u^t_i = y_i h_t(x_i)$
 2. Calculate the edge γ_t of h_t: $\gamma_t = d^t \cdot u^t$
 3. Set $\hat{\gamma}_t = \left(\min_{q=1, \ldots, t} \gamma_q \right) - \delta$ and solve
 $$d^{t+1} = \text{argmin}_{\{d \in \mathcal{P}^N \mid d \leq 1/\nu; d \cdot u^q \leq \hat{\gamma}_t, \text{ for } 1 \leq q \leq t\}} \Delta(d, d^1)$$
 with C_t
 4. If above infeasible or d^{t+1} contains a zero then $T = t$ and break
4. **Output:** $f_\alpha(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$, where the coefficients α_t maximize margin over hypotheses set $\{h_1, \ldots, h_T\}$.
Softboost δ, ν

1. **Input:** $S = \langle (x_1, y_1), \ldots, (x_N, y_N) \rangle$, desired accuracy δ
2. **Initialize:** $d_n^1 = 1/N$ for all $n = 1 \ldots N$
3. **Do for** $t = 1, \ldots$
 1. Train classifier on $\{S, d^t\}$ and obtain hypothesis $h_t : x \mapsto [-1, 1]$ and let $u_i^t = y_i h_t(x_i)$
 2. Calculate the edge γ_t of h_t: $\gamma_t = d^t \cdot u^t$
 3. Set $\hat{\gamma}_t = (\min_{q=1, \ldots, t} \gamma_q) - \delta$ and solve

Optimization Problem

$$d^{t+1} = \arg\min_{d \in C_t} \Delta(d, d^1)$$

with $C_t := \{d \in \mathcal{P}^N \mid d \leq 1/\nu, \ d \cdot u^q \leq \hat{\gamma}_t, \ \text{for} \ 1 \leq q \leq t\}$

4. **Output:** $f_{\alpha}(x) = \sum_{t=1}^T \alpha_t h_t(x)$, where the coefficients α_t maximize margin over hypotheses set $\{h_1, \ldots, h_T\}$.
Iteration Bound

Theorem

Assume the base learner returns hypotheses with edge greater than g, then SoftBoost terminates after at most \[\frac{2 \ln(N/\nu)}{\delta^2} \] iteration with margin at least $g - \delta$.

[Warmuth, Glocer & G.R., 2007]
Generalization performance of SoftBoost (solid) and LPBoost (dotted) on a synthetic data set with 10% label-noise for different δ.

Gunnar Rätsch (FML, Tübingen)
Convergence Speed of Different Algorithms

Soft margin objective vs. the number of iterations for LPBoost, SoftBoost, BrownBoost and SmoothBoost.
Generalization Errors on IDA Benchmarks

- RBF networks as base learner
- 5-fold cross-validation on 100 splits
- Average error ± standard deviation
- LPBoost very similar to SoftBoost (not shown)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>AdaBoost</th>
<th>BrownBoost</th>
<th>AdaBoost reg</th>
<th>SoftBoost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banana</td>
<td>13.3 ± 0.7</td>
<td>12.9 ± 0.7</td>
<td>11.3 ± 0.6</td>
<td>11.1 ± 0.5</td>
</tr>
<tr>
<td>B.Cancer</td>
<td>32.1 ± 3.8</td>
<td>30.2 ± 3.9</td>
<td>27.3 ± 4.3</td>
<td>28.0 ± 4.5</td>
</tr>
<tr>
<td>Diabetes</td>
<td>27.9 ± 1.5</td>
<td>27.2 ± 1.6</td>
<td>24.5 ± 1.7</td>
<td>24.4 ± 1.7</td>
</tr>
<tr>
<td>German</td>
<td>26.9 ± 1.9</td>
<td>24.8 ± 1.9</td>
<td>25.0 ± 2.2</td>
<td>24.7 ± 2.1</td>
</tr>
<tr>
<td>Heart</td>
<td>20.1 ± 2.7</td>
<td>20.0 ± 2.8</td>
<td>17.6 ± 3.0</td>
<td>18.2 ± 2.7</td>
</tr>
<tr>
<td>Ringnorm</td>
<td>1.9 ± 0.3*</td>
<td>1.9 ± 0.2</td>
<td>1.7 ± 0.2</td>
<td>1.8 ± 0.2</td>
</tr>
<tr>
<td>F.Solar</td>
<td>36.1 ± 1.5</td>
<td>36.1 ± 1.4</td>
<td>34.4 ± 1.7</td>
<td>35.5 ± 1.4</td>
</tr>
<tr>
<td>Thyroid</td>
<td>4.4 ± 1.9</td>
<td>4.6 ± 2.1</td>
<td>4.9 ± 2.0</td>
<td>4.9 ± 1.9</td>
</tr>
<tr>
<td>Titanic</td>
<td>22.8 ± 1.0</td>
<td>22.8 ± 0.8</td>
<td>22.7 ± 1.0</td>
<td>23.0 ± 0.8</td>
</tr>
<tr>
<td>Waveform</td>
<td>10.5 ± 0.4</td>
<td>10.4 ± 0.4</td>
<td>10.4 ± 0.7</td>
<td>9.8 ± 0.5</td>
</tr>
</tbody>
</table>
Summarizing Boosting

- AdaBoost can be viewed as entropy projection
- TotalBoost projects based on all previous hypotheses
- Provably maximizes the margin
 - Theory: as fast as AdaBoost*
 - Practice: much faster (\approx LPBoost)
- Experiments corroborate our theory
 - Few iterations (good for feature selection)
 - LPBoost may have problems of maximizing the margin
- Soft margin extension with provable convergence
- First time to combine
 - Theoretical convergence guarantee
 - Empirical fast convergence
 - Good generalization performance on noisy data
Slides with references will be available at http://www.fml.mpg.de/raetsch/lectures/

Collaborators for this work:
Kristin Bennett, Ayhan Demiriz, Karen Glocer, Jun Liao, Sebastian Mika, Klaus-Robert Müller, Takashi Onoda, Bernhard Schölkopf, Sören Sonnenburg, Manfred Warmuth

Thank You!
C. Cortes and V.N. Vapnik.
Support vector networks.

A. Demiriz, K.P. Bennett, and J. Shawe-Taylor.
Linear programming boosting via column generation.

Y. Freund and R.E. Schapire.
A decision-theoretic generalization of on-line learning and an application to boosting.

R. Hettich and K.O. Kortanek.
Semi-infinite programming: Theory, methods and applications.

R. Meir and G. Rätsch.
An introduction to boosting and leveraging.

G. Rätsch.

Robust Boosting via Convex Optimization.

G. Rätsch, A. Demiriz, and K. Bennett.
Sparse regression ensembles in infinite and finite hypothesis spaces.

G. Rätsch and M.K. Warmuth.
Efficient margin maximization with boosting.

Totally corrective boosting algorithms that maximize the margin.